U.S. flag

An official website of the United States government

Format
Items per page

Send to:

Choose Destination

Search results

Items: 18

1.

Malignant hyperthermia, susceptibility to, 1

Malignant hyperthermia susceptibility (MHS) is a pharmacogenetic disorder of skeletal muscle calcium regulation associated with uncontrolled skeletal muscle hypermetabolism. Manifestations of malignant hyperthermia (MH) are precipitated by certain volatile anesthetics (i.e., halothane, isoflurane, sevoflurane, desflurane, enflurane), either alone or in conjunction with a depolarizing muscle relaxant (specifically, succinylcholine). The triggering substances cause uncontrolled release of calcium from the sarcoplasmic reticulum and may promote entry of extracellular calcium into the myoplasm, causing contracture of skeletal muscles, glycogenolysis, and increased cellular metabolism, resulting in production of heat and excess lactate. Affected individuals experience acidosis, hypercapnia, tachycardia, hyperthermia, muscle rigidity, compartment syndrome, rhabdomyolysis with subsequent increase in serum creatine kinase (CK) concentration, hyperkalemia with a risk for cardiac arrhythmia or even cardiac arrest, and myoglobinuria with a risk for renal failure. In nearly all cases, the first manifestations of MH (tachycardia and tachypnea) occur in the operating room; however, MH may also occur in the early postoperative period. There is mounting evidence that some individuals with MHS will also develop MH with exercise and/or on exposure to hot environments. Without proper and prompt treatment with dantrolene sodium, mortality is extremely high. [from GeneReviews]

MedGen UID:
443948
Concept ID:
C2930980
Finding
2.

Pseudohypoparathyroidism type 1B

Disorders of GNAS inactivation include the phenotypes pseudohypoparathyroidism Ia, Ib, and Ic (PHP-Ia, -Ib, -Ic), pseudopseudohypoparathyroidism (PPHP), progressive osseous heteroplasia (POH), and osteoma cutis (OC). PHP-Ia and PHP-Ic are characterized by: End-organ resistance to endocrine hormones including parathyroid hormone (PTH), thyroid-stimulating hormone (TSH), gonadotropins (LH and FSH), growth hormone-releasing hormone (GHRH), and CNS neurotransmitters (leading to obesity and variable degrees of intellectual disability and developmental delay); and The Albright hereditary osteodystrophy (AHO) phenotype (short stature, round facies, and subcutaneous ossifications) and brachydactyly type E (shortening mainly of the 4th and/or 5th metacarpals and metatarsals and distal phalanx of the thumb). Although PHP-Ib is characterized principally by PTH resistance, some individuals also have partial TSH resistance and mild features of AHO (e.g., brachydactyly). PPHP, a more limited form of PHP-Ia, is characterized by various manifestations of the AHO phenotype without the hormone resistance or obesity. POH and OC are even more restricted variants of PPHP: POH consists of dermal ossification beginning in infancy, followed by increasing and extensive bone formation in deep muscle and fascia. OC consists of extra-skeletal ossification that is limited to the dermis and subcutaneous tissues. [from GeneReviews]

MedGen UID:
350343
Concept ID:
C1864100
Disease or Syndrome
3.

Pseudohypoparathyroidism type I A

Disorders of GNAS inactivation include the phenotypes pseudohypoparathyroidism Ia, Ib, and Ic (PHP-Ia, -Ib, -Ic), pseudopseudohypoparathyroidism (PPHP), progressive osseous heteroplasia (POH), and osteoma cutis (OC). PHP-Ia and PHP-Ic are characterized by: End-organ resistance to endocrine hormones including parathyroid hormone (PTH), thyroid-stimulating hormone (TSH), gonadotropins (LH and FSH), growth hormone-releasing hormone (GHRH), and CNS neurotransmitters (leading to obesity and variable degrees of intellectual disability and developmental delay); and The Albright hereditary osteodystrophy (AHO) phenotype (short stature, round facies, and subcutaneous ossifications) and brachydactyly type E (shortening mainly of the 4th and/or 5th metacarpals and metatarsals and distal phalanx of the thumb). Although PHP-Ib is characterized principally by PTH resistance, some individuals also have partial TSH resistance and mild features of AHO (e.g., brachydactyly). PPHP, a more limited form of PHP-Ia, is characterized by various manifestations of the AHO phenotype without the hormone resistance or obesity. POH and OC are even more restricted variants of PPHP: POH consists of dermal ossification beginning in infancy, followed by increasing and extensive bone formation in deep muscle and fascia. OC consists of extra-skeletal ossification that is limited to the dermis and subcutaneous tissues. [from GeneReviews]

MedGen UID:
488447
Concept ID:
C3494506
Disease or Syndrome
4.

Tumoral calcinosis, hyperphosphatemic, familial, 1

Hyperphosphatemic familial tumoral calcinosis (HFTC) is characterized by: Ectopic calcifications (tumoral calcinosis) typically found in periarticular soft tissues exposed to repetitive trauma or prolonged pressure (e.g., hips, elbows, and shoulders); and Painful swellings (referred to as hyperostosis) in the areas overlying the diaphyses of the tibiae (and less often the ulna, metacarpal bones, and radius). The dental phenotype unique to HFTC includes enamel hypoplasia, short and bulbous roots, obliteration of pulp chambers and canals, and pulp stones. Less common are large and small vessel calcifications that are often asymptomatic incidental findings on radiologic studies but can also cause peripheral vascular insufficiency (e.g., pain, cold extremities, and decreased peripheral pulses). Less frequently reported findings include testicular microlithiasis and angioid streaks of the retina. [from GeneReviews]

MedGen UID:
1642611
Concept ID:
C4692564
Disease or Syndrome
5.

Pseudohypoparathyroidism type 1C

Disorders of GNAS inactivation include the phenotypes pseudohypoparathyroidism Ia, Ib, and Ic (PHP-Ia, -Ib, -Ic), pseudopseudohypoparathyroidism (PPHP), progressive osseous heteroplasia (POH), and osteoma cutis (OC). PHP-Ia and PHP-Ic are characterized by: End-organ resistance to endocrine hormones including parathyroid hormone (PTH), thyroid-stimulating hormone (TSH), gonadotropins (LH and FSH), growth hormone-releasing hormone (GHRH), and CNS neurotransmitters (leading to obesity and variable degrees of intellectual disability and developmental delay); and The Albright hereditary osteodystrophy (AHO) phenotype (short stature, round facies, and subcutaneous ossifications) and brachydactyly type E (shortening mainly of the 4th and/or 5th metacarpals and metatarsals and distal phalanx of the thumb). Although PHP-Ib is characterized principally by PTH resistance, some individuals also have partial TSH resistance and mild features of AHO (e.g., brachydactyly). PPHP, a more limited form of PHP-Ia, is characterized by various manifestations of the AHO phenotype without the hormone resistance or obesity. POH and OC are even more restricted variants of PPHP: POH consists of dermal ossification beginning in infancy, followed by increasing and extensive bone formation in deep muscle and fascia. OC consists of extra-skeletal ossification that is limited to the dermis and subcutaneous tissues. [from GeneReviews]

MedGen UID:
420958
Concept ID:
C2932716
Disease or Syndrome
6.

Autosomal dominant hypocalcemia 1

Autosomal dominant hypocalcemia-1 is associated with low or normal serum parathyroid hormone concentrations (PTH). Approximately 50% of patients have mild or asymptomatic hypocalcemia; about 50% have paresthesias, carpopedal spasm, and seizures; about 10% have hypercalciuria with nephrocalcinosis or kidney stones; and more than 35% have ectopic and basal ganglia calcifications (summary by Nesbit et al., 2013). Thakker (2001) noted that patients with gain-of-function mutations in the CASR gene, resulting in generally asymptomatic hypocalcemia with hypercalciuria, have low-normal serum PTH concentrations and have often been diagnosed with hypoparathyroidism because of the insensitivity of earlier PTH assays. Because treatment with vitamin D to correct the hypocalcemia in these patients causes hypercalciuria, nephrocalcinosis, and renal impairment, these patients need to be distinguished from those with other forms of hypoparathyroidism (see 146200). Thakker (2001) suggested the designation 'autosomal dominant hypocalcemic hypercalciuria' for this CASR-related disorder. Genetic Heterogeneity of Autosomal Dominant Hypocalcemia Autosomal dominant hypocalcemia-2 (HYPOC2; 615361) is caused by mutation in the GNA11 gene (139313) on chromosome 19p13. [from OMIM]

MedGen UID:
87438
Concept ID:
C0342345
Disease or Syndrome
7.

Primary hypomagnesemia

Familial hypomagnesemia with hypercalciuria and nephrocalcinosis is a progressive renal disorder characterized by excessive urinary Ca(2+) and Mg(2+) excretion. There is progressive loss of kidney function, and in about 50% of cases, the need for renal replacement therapy arises as early as the second decade of life (summary by Muller et al., 2006). Amelogenesis imperfecta may also be present in some patients (Bardet et al., 2016). A similar disorder with renal magnesium wasting, renal failure, and nephrocalcinosis (HOMG5; 248190) is caused by mutations in another tight-junction gene, CLDN19 (610036), and is distinguished by the association of severe ocular involvement. For a discussion of phenotypic and genetic heterogeneity of familial hypomagnesemia, see HOMG1 (602014). [from OMIM]

MedGen UID:
120640
Concept ID:
C0268448
Disease or Syndrome
8.

Acrodysostosis 1 with or without hormone resistance

Acrodysostosis-1 (ACRDYS1) is a form of skeletal dysplasia characterized by short stature, severe brachydactyly, facial dysostosis, and nasal hypoplasia. Affected individuals often have advanced bone age and obesity. Laboratory studies show resistance to multiple hormones, including parathyroid, thyrotropin, calcitonin, growth hormone-releasing hormone, and gonadotropin (summary by Linglart et al., 2011). However, not all patients show endocrine abnormalities (Lee et al., 2012). Genetic Heterogeneity of Acrodysostosis See also ACRDYS2 (614613), caused by mutation in the PDE4D gene (600129) on chromosome 5q12. [from OMIM]

MedGen UID:
477858
Concept ID:
C3276228
Disease or Syndrome
9.

Hyperphosphatasemia with bone disease

Paget disease of bone-5 is an autosomal recessive, juvenile-onset form of Paget disease, a disorder of the skeleton resulting from abnormal bone resorption and formation. Clinical manifestations include short stature, progressive long bone deformities, fractures, vertebral collapse, skull enlargement, and hyperostosis with progressive deafness. There is phenotypic variability, with some patients presenting in infancy, while others present later in childhood (summary by Naot et al., 2014). For discussion of genetic heterogeneity of Paget disease of bone, see 167250. [from OMIM]

MedGen UID:
75678
Concept ID:
C0268414
Disease or Syndrome
10.

Autosomal dominant Kenny-Caffey syndrome

A rare, primary bone dysplasia characterized by severe growth retardation, short stature, cortical thickening and medullary stenosis of long bones, delayed closure of the anterior fontanelle, absent diploic space in the skull bones, prominent forehead, macrocephaly, dental anomalies, eye problems (hypermetropia and pseudopapilledema), and hypocalcemia due to hypoparathyroidism, sometimes resulting in convulsions. Intelligence is normal. [from ORDO]

MedGen UID:
1373312
Concept ID:
C4316787
Disease or Syndrome
11.

Malignant hyperthermia, susceptibility to, 2

Malignant hyperthermia susceptibility (MHS) is a pharmacogenetic disorder of skeletal muscle calcium regulation associated with uncontrolled skeletal muscle hypermetabolism. Manifestations of malignant hyperthermia (MH) are precipitated by certain volatile anesthetics (i.e., halothane, isoflurane, sevoflurane, desflurane, enflurane), either alone or in conjunction with a depolarizing muscle relaxant (specifically, succinylcholine). The triggering substances cause uncontrolled release of calcium from the sarcoplasmic reticulum and may promote entry of extracellular calcium into the myoplasm, causing contracture of skeletal muscles, glycogenolysis, and increased cellular metabolism, resulting in production of heat and excess lactate. Affected individuals experience acidosis, hypercapnia, tachycardia, hyperthermia, muscle rigidity, compartment syndrome, rhabdomyolysis with subsequent increase in serum creatine kinase (CK) concentration, hyperkalemia with a risk for cardiac arrhythmia or even cardiac arrest, and myoglobinuria with a risk for renal failure. In nearly all cases, the first manifestations of MH (tachycardia and tachypnea) occur in the operating room; however, MH may also occur in the early postoperative period. There is mounting evidence that some individuals with MHS will also develop MH with exercise and/or on exposure to hot environments. Without proper and prompt treatment with dantrolene sodium, mortality is extremely high. [from GeneReviews]

MedGen UID:
419301
Concept ID:
C2930981
Finding
12.

Malignant hyperthermia, susceptibility to, 3

Malignant hyperthermia susceptibility (MHS) is a pharmacogenetic disorder of skeletal muscle calcium regulation associated with uncontrolled skeletal muscle hypermetabolism. Manifestations of malignant hyperthermia (MH) are precipitated by certain volatile anesthetics (i.e., halothane, isoflurane, sevoflurane, desflurane, enflurane), either alone or in conjunction with a depolarizing muscle relaxant (specifically, succinylcholine). The triggering substances cause uncontrolled release of calcium from the sarcoplasmic reticulum and may promote entry of extracellular calcium into the myoplasm, causing contracture of skeletal muscles, glycogenolysis, and increased cellular metabolism, resulting in production of heat and excess lactate. Affected individuals experience acidosis, hypercapnia, tachycardia, hyperthermia, muscle rigidity, compartment syndrome, rhabdomyolysis with subsequent increase in serum creatine kinase (CK) concentration, hyperkalemia with a risk for cardiac arrhythmia or even cardiac arrest, and myoglobinuria with a risk for renal failure. In nearly all cases, the first manifestations of MH (tachycardia and tachypnea) occur in the operating room; however, MH may also occur in the early postoperative period. There is mounting evidence that some individuals with MHS will also develop MH with exercise and/or on exposure to hot environments. Without proper and prompt treatment with dantrolene sodium, mortality is extremely high. [from GeneReviews]

MedGen UID:
418956
Concept ID:
C2930982
Finding
13.

Hypoparathyroidism-retardation-dysmorphism syndrome

Hypoparathyroidism-retardation-dysmorphism syndrome (HRDS) is an autosomal recessive multisystem disorder characterized by intrauterine and postnatal growth retardation, infantile-onset hypoparathyroidism that can result in severe hypocalcemic seizures, dysmorphic facial features, and developmental delay (summary by Padidela et al., 2009 and Ratbi et al., 2015). [from OMIM]

MedGen UID:
340984
Concept ID:
C1855840
Disease or Syndrome
14.

Hypoparathyroidism, familial isolated, 2

Patients with familial isolated hypoparathyroidism-2 (FIH2) usually present with seizures, caused by hypocalcemia, in early life. Serum parathyroid hormone (PTH; 168450) levels are low to undetectable. Hyperphosphatemia is present, and levels of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D may be within the normal range. Development can be normal if hypocalcemia is treated with calcium and vitamin D supplementation (Ding et al., 2001). Some patients have been found to lack parathyroid glands (Thomee et al., 2005). For a discussion of genetic heterogeneity of familial isolated hypoparathyroidism, see FIH1 (146200). [from OMIM]

MedGen UID:
1715177
Concept ID:
C5394383
Disease or Syndrome
15.

Tumoral calcinosis, hyperphosphatemic, familial, 3

Hyperphosphatemic familial tumoral calcinosis (HFTC) is a rare autosomal recessive metabolic disorder characterized by the progressive deposition of basic calcium phosphate crystals in periarticular spaces, soft tissues, and sometimes bone (Chefetz et al., 2005). The biochemical hallmark of tumoral calcinosis is hyperphosphatemia caused by increased renal absorption of phosphate due to loss-of-function mutations in the FGF23 (605380) or GALNT3 (601756) gene. The term 'hyperostosis-hyperphosphatemia syndrome' (HHS) is sometimes used when the disorder is characterized by involvement of the long bones associated with the radiographic findings of periosteal reaction and cortical hyperostosis. Although some have distinguished HHS from FTC by the presence of bone involvement and the absence of skin involvement (Frishberg et al., 2005), Ichikawa et al. (2010) concluded that the 2 entities represent a continuous spectrum of the same disease, best described as familial hyperphosphatemic tumoral calcinosis. HFTC is considered to be the clinical converse of autosomal dominant hypophosphatemic rickets (ADHR; 193100), an allelic disorder caused by gain-of-function mutations in the FGF23 gene and associated with hypophosphatemia and decreased renal phosphate absorption (Chefetz et al., 2005; Ichikawa et al., 2005). For a general phenotypic description and a discussion of genetic heterogeneity of HFTC, see 211900. [from OMIM]

MedGen UID:
1638917
Concept ID:
C4693864
Disease or Syndrome
16.

Pseudohypoparathyroidism type II

Pseudohypoparathyroidism (PHP) is a term applied to a heterogeneous group of disorders whose common feature is resistance to parathyroid hormone (PTH; 168450). PHP type II is characterized by a normal cAMP response to PTH infusion, but a deficient phosphaturic response, indicating a defect distal to cAMP generation in renal cells. The clinical features of Albright hereditary osteodystrophy (AHO; see 103580) are not present in PHP II (Mantovani and Spada, 2006). For a general phenotypic description, classification, and a discussion of molecular genetics of pseudohypoparathyroidism, see PHP1A (103580). [from OMIM]

MedGen UID:
444371
Concept ID:
C2932717
Disease or Syndrome
17.

Spondyloepiphyseal dysplasia, nishimura type

The Nishimura type of spondyloepiphyseal dysplasia (SEDN) is characterized by disproportionate short stature with short limbs, small hands and feet, and midface hypoplasia with small nose. Radiologic hallmarks include mild spondylar dysplasia, delayed epiphyseal ossification of the hip and knee, and severe brachydactyly with cone-shaped phalangeal epiphyses (Grigelioniene et al., 2019). [from OMIM]

MedGen UID:
930816
Concept ID:
C4305147
Disease or Syndrome
18.

Hyperphosphatemia

An abnormally increased phosphate concentration in the blood. [from HPO]

MedGen UID:
39326
Concept ID:
C0085681
Disease or Syndrome
Format
Items per page

Send to:

Choose Destination

Supplemental Content

Find related data

Search details

See more...

Recent activity